Bounds on Some Ramsey Numbers Involving Quadrilateral

نویسندگان

  • Xiaodong Xu
  • Zehui Shao
  • Stanislaw P. Radziszowski
چکیده

Xiaodong Xu, Guangxi Academy of Sciences, Nanning, China Zehui Shao, Huazhong University of Science and Technology, Wuhan, China Stanis law Radziszowski∗, Rochester Institute of Technology, NY, USA For graphs G1, G2, · · · , Gm, the Ramsey number R(G1, G2, · · · , Gm) is defined to be the smallest integer n such that any m-coloring of the edges of the complete graph Kn must include a monochromatic Gi in color i, for some i. In this talk we report on several lower and upper bounds for some Ramsey numbers involving quadrilateral C4, including R(C4, K9) ≤ 32, 19 ≤ R(C4, C4, K4) ≤ 22, 31 ≤ R(C4, C4, C4, K4) ≤ 50, 52 ≤ R(C4, K4, K4) ≤ 72, 42 ≤ R(C4, C4, K3, K4) ≤ 76, and 87 ≤ R(C4, C4, K4, K4) ≤ 179.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On some Ramsey Numbers for Quadrilaterals

We will prove that R(C4, C4,K4 − e) = 16. This fills one of the gaps in the tables presented in a 1996 paper by Arste et al. Moreover by using computer methods we improve lower and upper bounds for some other multicolor Ramsey numbers involving quadrilateral C4. We consider 3 and 4-color numbers, our results improve known bounds.

متن کامل

On Some Zarankiewicz Numbers and Bipartite Ramsey Numbers for Quadrilateral

The Zarankiewicz number z(m,n; s, t) is the maximum number of edges in a subgraph of Km,n that does not contain Ks,t as a subgraph. The bipartite Ramsey number b(n1, · · · , nk) is the least positive integer b such that any coloring of the edges of Kb,b with k colors will result in a monochromatic copy of Kni,ni in the i-th color, for some i, 1 ≤ i ≤ k. If ni = m for all i, then we denote this ...

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Bounds on Some Ramsey Numbers

For graphs G1, G2, · · · , Gm, the Ramsey number R(G1, G2, · · · , Gm) is defined to be the smallest integer n such that anym-coloring of the edges of the complete graphKn must include a monochromatic Gi in color i, for some i. In this note we establish several lower and upper bounds for some Ramsey numbers involving quadrilateral C4, including R(C4,K9) ≤ 32, 19 ≤ R(C4, C4,K4) ≤ 22, 31 ≤ R(C4, ...

متن کامل

Some Bounds for the Ramsey-Paris-Harrington Numbers

It has recently been discovered that a certain variant of Ramsey's theorem cannot be proved in first-order Peano arithmetic although it is in fact a true theorem. In this paper we give some bounds for the "Ramsey-Paris-Harrington numbers" associated with this variant of Ramsey's theorem, involving coloring of pairs . In the course of the investigation we also study certain weaker and stronger p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2009