Bounds on Some Ramsey Numbers Involving Quadrilateral
نویسندگان
چکیده
Xiaodong Xu, Guangxi Academy of Sciences, Nanning, China Zehui Shao, Huazhong University of Science and Technology, Wuhan, China Stanis law Radziszowski∗, Rochester Institute of Technology, NY, USA For graphs G1, G2, · · · , Gm, the Ramsey number R(G1, G2, · · · , Gm) is defined to be the smallest integer n such that any m-coloring of the edges of the complete graph Kn must include a monochromatic Gi in color i, for some i. In this talk we report on several lower and upper bounds for some Ramsey numbers involving quadrilateral C4, including R(C4, K9) ≤ 32, 19 ≤ R(C4, C4, K4) ≤ 22, 31 ≤ R(C4, C4, C4, K4) ≤ 50, 52 ≤ R(C4, K4, K4) ≤ 72, 42 ≤ R(C4, C4, K3, K4) ≤ 76, and 87 ≤ R(C4, C4, K4, K4) ≤ 179.
منابع مشابه
On some Ramsey Numbers for Quadrilaterals
We will prove that R(C4, C4,K4 − e) = 16. This fills one of the gaps in the tables presented in a 1996 paper by Arste et al. Moreover by using computer methods we improve lower and upper bounds for some other multicolor Ramsey numbers involving quadrilateral C4. We consider 3 and 4-color numbers, our results improve known bounds.
متن کاملOn Some Zarankiewicz Numbers and Bipartite Ramsey Numbers for Quadrilateral
The Zarankiewicz number z(m,n; s, t) is the maximum number of edges in a subgraph of Km,n that does not contain Ks,t as a subgraph. The bipartite Ramsey number b(n1, · · · , nk) is the least positive integer b such that any coloring of the edges of Kb,b with k colors will result in a monochromatic copy of Kni,ni in the i-th color, for some i, 1 ≤ i ≤ k. If ni = m for all i, then we denote this ...
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملBounds on Some Ramsey Numbers
For graphs G1, G2, · · · , Gm, the Ramsey number R(G1, G2, · · · , Gm) is defined to be the smallest integer n such that anym-coloring of the edges of the complete graphKn must include a monochromatic Gi in color i, for some i. In this note we establish several lower and upper bounds for some Ramsey numbers involving quadrilateral C4, including R(C4,K9) ≤ 32, 19 ≤ R(C4, C4,K4) ≤ 22, 31 ≤ R(C4, ...
متن کاملSome Bounds for the Ramsey-Paris-Harrington Numbers
It has recently been discovered that a certain variant of Ramsey's theorem cannot be proved in first-order Peano arithmetic although it is in fact a true theorem. In this paper we give some bounds for the "Ramsey-Paris-Harrington numbers" associated with this variant of Ramsey's theorem, involving coloring of pairs . In the course of the investigation we also study certain weaker and stronger p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 90 شماره
صفحات -
تاریخ انتشار 2009